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Abstract
Roles for urease in virulence are accepted forHelicobacter pylori and urinary tract pathogens.However,
urease is widely expressed by bacterial and fungal lung pathogens causing emerging and opportunistic
lung infections, organisms causing acute exacerbations of chronic bronchitis,mycobacterial lung
diseases such as tuberculosis (TB), and ventilator associated pneumonia and health care associated
pneumonia. Detection of urease provides amethod for rapid in vivo detection of these lung pathogens
by inhaled 13C- breath test, and this review discusses the range of lung pathogens thatmight be
amenable to rapid diagnosis.

Introduction

Urease allows a range of microbial pathogens to hydro-
lyze urea, a product that is ubiquitous in the host, to
supply available nitrogen for growth, to alter local pH or
to provide ammonia to cause local tissue damage for
invasion. Although urease is recognized as a virulence
factor in urinary tract pathogens andHelicobacter pylori,
it is expressed by a much wider range of pathogens,
especially respiratory pathogens in which there is broad
variation in urease enzymology, mechanisms of urease
regulation, and roles of urease in virulence. These
variations, especially in urease regulation, have only
recently become fully appreciated, and have implications
for the use of urease for in vitro and in vivo diagnosis of
lung infections. Here, we review what is known about
urease, its detection in vitro and in situ, and its regulation
and role in virulence for these respiratory pathogens,
focusing upon emerging bacterial and fungal respiratory
pathogens, mycobacteria, and pathogens causing serious
pneumonias (health care associated and ventilator asso-
ciated pneumonias, hospital acquired pneumonia (HAP)
andVAP, respectively).

Urea is a freely available nutrient in lung

Urea, the major urinary excretory waste product of
nitrogen metabolism, is present in human plasma at

between 2.5 and 8 mM [1]. However, widespread
expression of extra-renal urea transporters in most
tissues [2] leads to its distribution throughout the body
at levels similar to those of plasma. In lung airway
surface fluid (ASF) urea is 2–4 mM [3], and in rapid
equilibrium with plasma: for example, increasing the
dwell time of bronchoalveolar lavage fluid for just
1 min increased the urea recovery by almost 200%
indicating rapid exchange of plasma urea into lung
fluids. Conversely, transport of from lung ASF into
plasma is just as rapid [4]. Thus, by providing a
nitrogen source at 2–4 mM, urea could be an impor-
tant potential nutrient for urease expressing microbes
in the lung, with any microbial depletion of urea in
ASF being rapidly replaced from the plasma. Alterna-
tively, a major mechanism of microbial control in the
lung is their phagocytosis into and killing in acidified
phagosomes and phagolysosomes, and so the ability to
utilize lung urea to provide neutralizing ammoniamay
also be important in enabling microbial survival and
eventual infection.

UreaseKmoptimization and regulation

Ureases hydrolyze urea into ammonia and carbon
dioxide. The enzymology and general genetics of
microbial ureases have been well reviewed, as have
their potential virulence roles, and a number of
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excellent reviews and perspectives are highly recom-
mended [5–10]. The Michaelis constant (Km) of a
pathogen’s urease is usually associated with locally
available urea levels at its typical site of infection. For
example the urease of Helicobacter pylori, a pathogen
of the stomach where urea concentrations are rela-
tively low, has a Km of 0.5 mM [11]. In contrast, the
urease of Proteus mirabilis, a pathogen of the urinary
tract where urea is abundant (50–150 mM) has aKm of
10 mM [12]. Although the reasons for the correlation
between local urea concentrations and Km are uncer-
tain, most ureases are strictly intracellular, and most
urea transporters of pathogenic microbes are passive
and not active. Thus a urease Km appreciably lower
than extracellular urea concentrations enables meta-
bolism of intracellular urea concentrations down to
low levels (at or below the Km) to drive passive influx
of urea along its concentration gradient. This relation-
ship also holds for lung pathogens as ASF urea levels of
2–4 mM [3] are significantly higher than the Km of
most lung pathogen ureases that are known (table 1).
Different species of microbes utilize three major
mechanisms to regulate urease expression: control by
available nitrogen, direct upregulation by urea, and
upregulation by acidic conditions, although some
species-specific alternatemechanisms occur.

Detection ofmicrobial urease in vitro by
conventional culture

Themost commonurease assays are phenotypic assays
that asses an isolates’ ability to hydrolyze urea in a
weakly acidic medium, thereby causing a pH indicator
color change. The different urease phenotypic media,
developed many years ago, often contain peptones or
other nitrogen sources at significant levels, e.g. Chris-
tensen’s urea agar contains 1 g l−1 peptone providing
roughly 10 mM of freely available nitrogen. However,
it has become apparent in recent years that the
regulation mechanisms of urease expression are quite
varied between organisms. As shown in table 1, it can
be upregulated through general nitrogen limitation
(e.g. P. aeruginosa,M. tuberculosis) directly by available

urea concentrations (Proteus mirabilis) or by acidic
pH (e.g. S. aureus), in M. tuberculosis maximal urease
activity was only observed at less than 1 mM of
available nitrogen [15]. Therefore, using a nitrogen
rich urease media such as Christensen’s urea agar
might result in less than maximal urease expression in
organisms whose urease expression is controlled
through nitrogen availability. This phenomenon has
been shown experimentally for Acinetobacter anitratus
a species highly related to A. baumannii and also
known to cause respiratory infection [19, 20], with
urease negativity on Christensen’s and other peptone
or tryptone containing media that was not observed in
media without these additions [21]. Even in the case of
urease media that contain very low non-urea nitrogen
(typically 0.1 g l−1 yeast extract), if the inoculum was
prepared in nitrogen richmedia it may take some time
for full urease expression to occur in nitrogen-
regulated organisms. Thismay account for some of the
variability in urease positivity occasionally seen in the
literature, especially in organisms whose urease
expression is tightly regulated by available nitrogen.
This is an area that should receive more study, as it is
likely that some misinterpretations of urease pheno-
typic negativity exist.

Detection ofmicrobial urease in vivo in
lung by breath test

Another issue for conventional phenotypic tests is that
they require the acquisition of a representative sample
from the infection site, and usually further growth and
isolation of the sample: this may be difficult and time-
consuming, and also require invasive procedures such
as bronco-alveolar lavage. Therefore, in vivo breath
tests have been developed in which isotopically labeled
urea is administered to a specific anatomical site, and
the elimination of urease-derived labeled CO2 in the
breath measured. The first developed application
involves a labeled urea drink to detect urease positive
H. pylori in the stomach, with several clinical products
available (e.g. BreathTek® by Otsuka, BreathID® by
Exalenz). We have been developing an inhaled
13C-urea breath test to detect urease positive patho-
gens in the lung, have shown preclinical proof of
concept in a rabbit model of TB [22] and have
extended the approach to other chemistries [23–25].
We recently reported a clinical trial of orally adminis-
tered urea breath test in TB showed acceptable
sensitivity, but with a low selectivity due to a wide
range ofGI tract urease positive organisms [26].

We published the first clinical data of the inhaled
13C-urea breath test in controls and in cystic fibrosis
(CF) patients with P. aeruginosa colonization [27]. The
increase in exhaled 13CO2 after inhalation of nebulized
13C-urea was dependent both upon P. aeruginosa colo-
nization status and upon 13C-urea dose. This increase
was also very rapid, and maximal at the earliest point

Table 1.Urease expression regulatory systems,michaelis constants
(Km) for selected lung pathogens andH. pylori.

Pathogen UreaseKm (mM) Urease expression control

S. aureus pH, Rot, biofilm. Agr?

K. pneumonia 0.28 [13] nitrogen

P. aeruginosa Nitrogen/rpoN

M.morganii 0.24 [12]–
0.7 [14]

pH (direct enzyme

activation)
Proteus spp. 10 [12] to 60 [14] Urea/UreR

M. tuberculosis 0.3 [15] Nitrogen

U. urealyticum 2.5 [16] Constitutive ?

H. pylori 0.3 [17] to
0.8 [18]

Constitutive, Nickel
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measured, 5 min after nebulization, so that potential
H. pylori GI signals may not be present at these early
time points, although suppression of H. pylori urease
could also be performed by oral bismuth salt therapy if
necessary [28]. Thus, it would appear that microbial
urease activity can be readily determined in vivo in the
lungs of patients. The clinical utility of the inhaled urea
breath test remains to be determined, but upon appro-
priate validation might enable rapid and early detec-
tion of lung infections and their response to
antibiotics.

Urease as a broad diagnostic target in lung
infections

Since initially proposing that the lung pathogens, M.
tuberculosis and P. aeruginosa can be detected in vivo
by inhalation of 13C urea and assay of 13CO2 in breath,
we realized that a much wide range of lung pathogens
express urease. These are not limited to bacteria, but
also include important fungal lung pathogens [29–31]
, and we review the available literature upon urease in
lung pathogenmetabolism and virulence at the species
level. First, we cover fungi and atypical or emerging
lung pathogens such as Ureaplasma urealyticum and
Cryptococcus neoformans in which clear virulence roles
are established. Next we cover the intermediate
virulence case of Mycobacteria. Finally, we cover
bacterial pathogens causing ventilator associated
pneumonia (VAP) andHAP inwhich the role of urease
in virulence appears weak to non-existent, but that
may enable diagnosis by breath test.

Species specific role of urease in virulence
and diagnosis in lung infections

Opportunistic and emerging lung pathogens
A range of less frequently observed and opportunistic
pathogens of the lung express urease, and frequently
exhibit interesting properties: for example, Urea-
plasma urealyticum derives most of its ATP from urea
hydrolysis, while major roles for urease have been
demonstrated for urease in the virulence of some
fungal pathogens.

Cryptococcus, coccidioides and aspergillus fungi
Although several pathogenic fungi express urease, the
field is best developed in C. neoformans. Urease is
overwhelmingly expressed, for example in C. neofor-
mans isolates 285/286 showed rapid urease activity
[32] and a rapid presumptive test based upon urease
activity has been developed [33]. The genetics of theC.
neoformansurease operonwere recently reported, with
urease expression both limited by high available
nitrogen, and increased by urea [34]. A profound
defect in the virulence of a urease mutant of C.
neoformans was shown in an inhalation mouse model:
at day 38 of infection all urease mutant infected mice

were alive while all urease positive infected mice were
dead [35]. Urease was also powerfully associated with
metastasis to the brain after pulmonary infection,
through ammonia induced tissue damage enabling
microvascular sequestration and brain invasion
[34, 36]. Urease is also directly involved in driving a
non-protective Type 2 immune response in C. neofor-
mans infection [31]. Recently, urease deletion was also
shown to significantly alter pathogenesis (time to
death) in an intranasal inoculation mouse model of C.
gatii infection [30], and although related to C. neofor-
mans, this pathogen is clearly capable of infecting
immunocompetent patients [37]. Cryptococcal urease
expression was decreased in mutants in an inositol
polyphosphate kinase (IPK), that were also of greatly
attenuated virulence in amurine inhaled cryptococco-
sis, suggesting IPK is important in control of urease
expression [38].

InCoccidioides posadasii, the causative agent of San
Joaqin Valley fever, a similarly profound defect in
virulence of a urease mutant was observed in a mouse
intranasal challenge model [39]. More recent work
showed urease deletion resulted in almost 4 logs less
lung CFU of C. posadasii in the same mouse model,
and a urease deletant showed 60%–70% survival as
opposed to 0% survival in the wild type [39, 40]. This
group has also shown that a vaccine based upon
recombinant urease dramatically decrease lung and
spleen burdens, and also increased survival in an intra-
peritoneal infection mouse model of coccidioidomy-
cosis [41]. Urease was observed to be overexpressed in
yeast-phase cells recovered from mouse infection in a
transcriptomic study of the related organism Para-
coccidioides brasiliensis [42].

Aspergillus species cause a range of pulmonary
disease including invasive aspergillosis chronic pul-
monary aspergillosis, and Aspergillus bronchitis in
patients with CF, bronchiectasis, lung transplant and
artificial ventilation[43, 44]. A study of aspergillosis-
causing strains showed urease positivity in 19/20 for
A. flavus, 15/15 for A. fumigatus, 19/30 for A. niger
and 15/15 for A. terreus [45], while isolates from
intensive care unit and operating room air were urease
positive in 19/20 for A. flavus, 15/16 for A. fumigatus
and 16/19 for A. niger [46]. The role of urease activity
in virulence is as yet unclear.

Ureaplasma urealyticum
This mycoplasma is an opportunistic pathogen in the
premature and neonates and can lead to severe
pneumonias [47], with significant lung inflammation
and damage [48] and is also linked to bronchopul-
monary dysplasia [49]. Hyperammonia syndrome in
transplant patients (especially lung transplant) is also
linked to this organism [50]. Remarkably, intracellular
urease activity generates a significant ammonia chemi-
cal potential of 80 mV and proton electrochemical
potential of 24 mV, such that 95% of all ATP synthesis
is directly dependent upon urease activity [51]. Since
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urease is responsible for so much ATP synthesis,
urease inhibition might be directly antimicrobial,
rather than just modifying virulence. Accordingly,
urease inhibition by the proton pump inhibitor
lansoprazole [52] lead to ATP depletion and effects on
growth, thus demonstrating urease is not just a
virulence factor but is essential. Recently, speciation
between higher virulenceU. urealyticum and the lower
virulence U. parvum has been performed using urease
genetic sequence differences and PCR [53], although a
correlation between virulence and urease activity was
not reported.

Brucella spp.
Lung infection by Brucella species is rare, but generally
associated with inhalation exposure [54] and has been
reported most frequently for B. melitensis [55–57]. An
unusual Brucella isolate with rapid urease positivity
caused chronic destructive pneumonia [58] suggestive
of a role of ammonia in tissue damage as for
cryptococci.

Nocardia spp.
Lung nocardiosis is caused by inhalation of the
opportunistic pathogens predominantly N. asteroids
andN. brasiliensis, especially in immunocompromised
hosts, COPD [59] and chronic granulomatous disease
[60]. Most pathogenic Nocardia isolates are urease
positive e.g. 29/30 isolates of N. asteroides [61], 24/26
of a novelNocardia taxon [62] and 40/40 isolates ofN.
farcinica [63], although some are reported negative
which may be due to inappropriate urease media use
[64]. There are no reports upon urease genes, enzy-
mology or regulation in these species. The only report
on virulence found that most pathogenic strains
(mouse foot and intraperitoneal infections) were
urease negative [65].

Other opportunistic and emerging urease positive lung
pathogens
There are many case reports of other emerging urease
positive pathogens in respiratory infections, although
nothing is known about the role of urease in these
infections. Rhodococcus equi causes lung infections
mimicking tuberculosis in immunocompromised
patients [66–68]. Ochrobactrum anthropi can cause
pneumonia in a variety of immunocompromised
states [69–71]. Similarly, a number of Sphingobacter-
ium species isolates from CF patients are urease
positive, although their role in lung decline remains
unknown [72, 73]. There are a number of reports of
respiratory infections by Corynebacterium pseudo-
diphtheriticum, including in immunocompetent
patients [74–77]. The opportunistic (predominantly
canine) pathogen Bordetella bronchiseptica can cause
pneumonias in HIV infected patients [78–80]. In B.
bronchiseptica, urease was not induced by urea or low
nitrogen, but temperature shift (30 °C–7 °C) [81].
Recently, the urease operon was detected and

sequenced in Chryseobacterium indologenes, an emer-
ging drug resistant respiratory pathogen in CF [82]
and other immunocompromised states [83]. In fungi,
Exophiala species are opportunistic respiratory patho-
gens, and environmental and clinical isolates all
expressed urease [84].

Mycobacteria
Most mycobacteria that are pathogenic to either
immune compromisedor immune competent patients,
such asM. tuberculosis,M. kansasii,M. scrofulaceum,M.
marinum and the M. chelonae-abscessus complex have
long been known to be urease positive at or close to
100%: the exceptions being M. avium intracellulare
complex (MAC) that is only very rarely positive and
M.bovis that is probably predominantly positive but has
been reported at from 60%–100% due to low numbers
of isolates [85–92]. The regulation of M. tuberculosis
urease has been shown dependent upon overall avail-
able nitrogen levels [90, 93] most likely through GlnR
[94–97].

A role for urease as a mycobacterial virulence fac-
tor has proven difficult to elucidate, the need for a
complex operon and the near 100% positivity of clin-
ical isolates of M. tuberculosis would argue for its
importance in human pathogenesis. Furthermore, the
enzymes substrate, urea, can only be obtained from a
mammalian host as pathogenic mycobacteria lack the
urea-forming degradative enzyme arginase [98]. How-
ever, experimental evidence has been ambiguous.
Early discussion was based upon the importance of
urease derived NH3 and phagolysosomal arrest
[99, 100]. Urease mutants in M. bovis BCG were
described, and in mouse lung, statistically significant
lower CFUs were observed for a urease negative
mutant (about 0.5 logs throughout the experimental
duration) [101]. However, no survival defect was
observed in phorbol ester treated THP-1 cells. Unap-
preciated perhaps though is the only urea source men-
tioned (RPMI 1640, 5% fetal calf serum, FCS, and
20 mM glutamine) would have been the 20 fold dilu-
ted serum (typically 3–5 mM in urea) [102] leading to
about 0.15–0.25 mM urea in the experiment-a value
below the ureaseKm and quite unlike the physiological
condition in which urea concentrations exceed theKm

by 10 fold or more. A similar argument (lack of rele-
vant urea concentration) can be made about macro-
phage killing results of urease knockout in M.
tuberculosis as the only urea source was tenfold diluted
FCS [93] and although the results of in vivo experi-
ments were similar to previously, about 0.5 or so log
CFUdeficit atmany time points throughout lung, liver
and spleen, eventually they reached that of the wild-
type. More direct studies of phagosomal pH with M.
bovis BCG in primary mouse macrophages (10% FCS
as urea source) did showmarked differences in phago-
somal pH (7 for wild type, 4.5–5.5 for the urease
knockout) [103]. Additional urea was found to
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potentiate pH dependent and urease-mediated altera-
tions in MHC-II trafficking in phorbol treated THP-1
cells (RPMI with 5% FCS ±2 to 50 mM urea), with a
clear urea dose response observed between 0, 2 and
10 mM [104].

Overall, it is difficult to reach a clear conclusion,
but urease could be important in aspects of disease not
well modeled bymice such as cavitation and/or trans-
mission where urease derived ammonia might cause
tissue damage (as has been observed in other micro-
organisms) [34, 36] and thereby enable dissemination
and transmission.

VAPandHAP caused by ESKAPEpathogens and
Haemophilus influenzae
VAP and HAP are major causes of morbidity and
mortality, and are frequently associated with patho-
gens for which antibiotic resistance is a concern,
especially the ESKAPE pathogens (Enterococcus fae-
cium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa and
Enterobacter spp.) [105]. Although the need for new
antibiotics for ESKAPE pathogens is appreciated, drug
discovery and development can be slow and complex
[106], and rapid diagnosis is often difficult. The extent
of known urease expression by the ESKAPE pathogens
and the other major pathogen H. influenza in several
pivotal studies of VAP and HAP, together with a study
of Intensive care unit associated pneumonia (IAP) is
shown in table 2. It can be seen that urease is expressed
by between 60% and 90% of the pathogens causing
VAP and HAP in these studies, the major exceptions
being the Enterobacter. These data hint that should
inhaled 13C urea breath test prove clinically effective, it

may assist the rapid diagnosis of many cases of VAP
and HAP. The characteristics of urease expression,
control and role in virulence are therefore discussed
for these species individually.

Staphylococcus aureus
S. aureus is generally urease positive in clinical isolates
e.g. a study ofmethicillin resistant S. aureus (MRSA) in
the UK showed 127/129 isolates were positive [111].
Several conditions control urease expression in S.
aureus. Firstly, urease transcription rapidly increases
in response to a shift from neutral to acidic stress, as
shown by two microarray studies. In the first, a shift
from neutrality to pH 5.5 caused upregulation of
urease genes of from2 to 13 fold [112]. The other study
involved a shift to pH 4.5 and showed rapid upregula-
tion of urease genes within 10 min by 6–47 fold [113].
A later study confirmed these findings, also showing
that urease was downregulated by alkaline pH [114].
This rapid upregulation of urease could provide
defenses when the organism becomes contained in an
acidified site, such as after phagocytosis [115]. Other
stresses have been shown to upregulate urease. A
proteomic analysis showed that the urease beta
subunit was increased 11–14 fold treatment with the
detergent Triton X-100 [116]. Treatment with anti-
biotics also appears to upregulate urease. A MRSA
strain, COL, increased urease expression upon adapta-
tion to high levels of oxacillin [117] and an increase in
urease transcription was also reported during adapta-
tion to daptomycin [118].

Secondly, urease is controlled by several broad
metabolic and growth phenotype regulatory path-
ways. A catabolite control protein A (CcpA) mutant

Table 2.Compilation of recent VAP andHAP studies as a function ofmicrobial etiology and potential detectability through urease.

ESKAPE Urease

NHSN2009–10

VAP [107]
SENTRY2004–8

USAVAP [108]
SENTRY2004–8USA

HAP (bacterial) [108]
SPAIN

VAP [109] IAP [110]

8474a
2585a (total
VAP&HAP)

2585a (total
VAP&HAP) 157a 330a

E. faecium Neg 0.3% nrb nr nr nr

S. aureus Pos 24.1% 31.9% 36.5% 29.6% 17%

K. pneumoniae Pos 10.1% 6.6% 8% 6.4% 13%

A. baumannii Pos 6.6% 5.3% 4.4% 8.9% 1%

P. aeruginosa Pos 16.6% 21.4% 19% 19.7% 16%

Enterobacter 8.8% 8.6% 13%

E. coli Neg 5.9% 1.3% 15%

E. faecalis Neg 0.5%

M.morganii Pos 3.8% 4%

Proteus sp. Pos 1.4% 10%

Serratia sp. Neg 4.6% 6.5% 5.5% 15%

NON-ESKAPE

H. influenzae Pos nr 12.2% 5.6% 17.4% 16%

Total potentiallyDetect-

able by in vivo urease

57% 77% 73% 85% 77%

a Numbers of infections in study.
b Not reported or not reported separately (nr).
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had downregulated urease gene expression compared
to wild type that was also phenotypically observed
[119]. The investigators had previously shown
RNAIII, a regulatory RNA that is central to the acces-
sory gene regulator (agr) response, is decreased in the
CcpA mutant [120]. Furthermore, urease was shown
to be negatively controlled at transcriptional and enzy-
matic levels by the rot system (repressor of toxins) that
appears to act in an opposite manner to agr [121]. A
ureF mutant was also found to decrease the agr-regu-
lated alpha hemolysin activity in a transposon screen
[122] although the mechanism was not elucidated. A
biofilm mode of growth, often associated with anti-
biotic resistance phenotypes, also increased transcrip-
tion of urease genes and urease enzyme activity [123].
The biofilm upregulation appears under control of the
ClpP protease, as deletion greatly increases expression
and enzymatic activity [124] and transcriptional and
enzymatic assays also confirmed negative control by
rot [121].

It was also shown that the urease operon is expres-
sed in a mouse lung infection model, in levels similar
to those seen in vitro in stationary phase [125]. Fur-
thermore, in amouse lung infectionmodel the expres-
sion of genes encoding urease subunits and
metabolism was higher in USA300 strain than
USA400: it was hypothesized this may account for the
association of USA300 strains with persistent and
recalcitrant infection [126]. Overall, urease regulation
in S. aureus is consistent with a role in adapting to a
range of stresses and growthmodes. A role of urease as
a classical virulence factor in lung infection has not
been reported, but it was an important virulence factor
in a mouse model of urinary tract infection [127], a
finding recapitulated in kidney infection by Fey and
co-workers [128].

Klebsiella pneumonia
K. pneumoniae is urease positive, and capable of
growth on urea as sole nitrogen source [129]. Its urease
positivity is such that the specificity of oral urea breath
testing for Helicobacter pylori can be compromised by
the presence of K. pneumoniae in the stomach
[130, 131]. Urease in K. pneumoniae is regulated by
nitrogen availability through the ntr nitrogen regula-
tory system: althoughmost transcription appears to be
regulated through the nitrogen assimilation control
protein (NAC) that is under ntr control, a second
promoter also allows lower levels of NAC-indepen-
dent transcription [132–135]. When cells were grown
in limiting nitrogen, urease expression was increased
by 78 fold compared to growth in nitrogen rich
conditions [133]. The genome contains the urtABCDE
operon, an ortholog of a high affinity active urea
transport protein that allows urea uptake at very low
concentrations in Synechocystis [136] and Corynebac-
terium glutamicum [137]. TheKm of this transporter in
whole cell K. pneumoniae was reported as 13 μM [13],
very much lower than the urease Km of 280 μM [13].

No role of urease in K. pneumoniae in virulence in the
lung has been shown [138, 139]. However, the initial
stage in nosocomial infection that precedes opportu-
nistic infection, is the colonization of the patient’s
gastrointestinal tract [140]. Urease was shown to be an
important virulence factor in GI colonization in a
mousemodel [141] and a urease mutant was unable to
compete for GI colonization with its urease positive
parent [142].

Acinetobacter baumannii
A. baumannii is urease positive [143] while other
Acinetobacter species isolated from humans are also
usually positive (97%) [144]. However, results using
Christensen’s agar have been reported as variable
[145] or even with positivity as low as 17% [146] as
discussed earlier. Little else has been reported about
the urease of A. baumannii although it is not required
for lung virulence [147]. However in a transposon
mutagenesis study, a mutant in the gamma subunit of
urease exhibited decreased virulence in a Caenorhab-
ditis elegansmodel [143]. As for K. pneumoniae, urease
promotes GI colonization in some Acinetobacter spp.
[148] although such a role in A. baumannii pathogen-
esis is unclear.

Pseudomonas aeruginosa
Urease expression has long been used in the identifica-
tion of P. aeruginosa [149] and almost all non-CF
isolates of P. aeruginosa express urease [150]. An
ortholog of the pH sensitive H. pylori urea transporter
gene ureI, encoded by PA3362, is also a predicted
cytoplasmic membrane protein and putative urea
transporter upregulated by simple amides in media
[151] and is part of the amiEBCRS operon [152]. Urease
regulation by ammonia levels is long known [153] and
is upregulated in nitrogen restricted conditions via
sensing of intracellular glutamine levels [154, 155] as is
urea uptake [156]. Although rpoNmutants have defects
in virulence [157, 158] many other virulence factors
than just urease are modified, and no definitive studies
of urease alone are known. Urease is downregulated
however, in certain strains and cloneswith ahighdegree
of adaptation and trophism for CF patients [150, 159].
A recent study of a range of clinical CF and non-CF
isolates, however, showed urease activity in all, with
relatively little variation and no association with
virulence [160]. However, the detection of urease
activity in the lungs of CF patients colonized with P.
aeruginosa [27] shows detectable activity in the lung,
evenwith the potential for downregulation.

Other enterobacteriaceae
Escherichia coli. Most strains do not produce urease
due tomutations in the ureD gene[161], however some
strains do carry an independent plasmid encoded
urease gene cluster that is active [162] and positively
regulated by urea through a ureR regulation mech-
anism [163]. Morganella morganii is a relatively
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infrequent cause of health care associated pneumonia
[110]. Its urease has been isolated, and exhibited a Km

of 0.8 mM. No role in lung virulence is known,
although it is known that urease protects the organism
from low pH in the presence of urea [164]. A lowered
cytosolic pH directly activates the urease, which shows
a pH maximum of 5.5 (in permeabilized cells) [164]
allowing instantaneous protection from low pH as it
does not depend upon transcription and translation.
Proteus mirabilis and other Proteus species are urease
positive [130, 165–167] and are relatively rare lung
pathogens [168, 169]. The enzyme has been isolated
and the Km for urea reported as 13 mM, higher than
many other lung pathogens, but in accord with its
usual role as a urinary tract pathogen. Urease is
positively and negatively regulated by UreR and H-NS
respectively, with both an increase in temperature
(25°C–37°C) and presence of urea leading to a loss of
H-NS mediated transcriptional repression [170, 171].
Although urease is an established virulence factor in
Proteus urinary tract infections [172, 173] no roles in
virulence in lung infection have been reported.

Haemophilus influenza
H. influenzae causes significant VAP and HAP, and is
also causes bacterial induced exacerbations in chronic
obstructive pulmonary disease (COPD) [174, 175]. It
is urease positive [176] and is expressed in humans
during infection, as serum IgG responses against its
urease are seen suggesting exposure to urease during
infection [177]. Isolates from COPD patient sputum
are much more likely to express urease than throat
swabs fromnormal (97% versus 78%) [178] indicating
a selective pressure to maintain urease activity in this
population. In vitro data shows urease is protective
against acid stress (pH 4) in a urea-dependent manner
[177]. A model of co-infection showed that the UreB
knockout produced an in vitro growth defect, and that
UreH was required both for single infection with H.
influenzae and co-infection with Influenza A [179]. A
proteomic study showed 8 fold upregulation of the
gamma subunit of urease when grown in sputum from
COPD patients rather than media, although no
control mechanisms were discussed [180]. Although
the mechanism of urease regulation is not known at
the molecular level, high levels of ammonia caused
decreased expression of urease activity, with 50%
inhibition by ∼75 mM ammonium chloride, and so it
is likely that nitrogen availability is at least one
regulator. H. parainfluenzae is also associated with
chronic bronchial disease [181] but appears to have
muchmore variability in urease expression [182].

Potential clinical roles for inhaled urea
testing

The rapid and point of care detection of lung
infections by using inhaled 13C-urea could prove

useful in a number of diseases, especially where
conventional sputum samples are either difficult to
obtain or are not usually informative. In fungal lung
infections, urease positivity could lead to a higher
index of suspicion and so lead to more rapid diagnosis
of these infections that are often diagnosed relatively
late, or that require invasive BAL or CT imaging
[183, 184]. In mycobacterial disease, the test could be
used to determine the need for further diagnosis, such
as GenExpert in TB, or culture for NTMs. The recent
ISDA/ATS guidelines on HAP and VAP diagnosis and
treatment represent a thoughtful response to the
diagnosis and treatment of these diseases [185]. The
lack of utility of many current biomarkers such as
procalcitonin, Triggering receptor expressed on mye-
loid cells (TREM-1) or C-reactive protein, led to
recommendations to not use these in diagnosis.
Furthermore, invasive sampling requirements and
slower microbial culture, led to recommendation not
to use bronchoalveolar lavage and quantitative cul-
tures in diagnosis. Since many of the concerns around
antibiotic stewardship in HAP and VAP are around
the potentially resistant and multidrug resistant
ESKAPE pathogens, their rapid detection as causative
agents in HAP/VAP by inhaled urea breath test might
provide further discrimination in antibiotic prescrip-
tion algorithms and practice, allowing better steward-
ship. More speculatively, changes in urease activity
may prove useful in monitoring antibiotic efficacy, or
may predict exacerbation in diseases such as CF.
Overall, these potential uses will need validation in a
range of clinical trials.

Conclusions

Urea is freely available in lung tissue and ASF for
microbial utilization through urease, and a wide range
of pathogens capable of causing respiratory infection
express urease. In many cases, the role of urease in
pathogenesis or virulence is established, but equally,
for many organisms it either does not appear impor-
tant or has not been studied. Roles in production of
ammonia for nitrogen utilization and/or local neutra-
lization of acidic pH are established in many cases, but
again in many species the role(s) of urease are unclear.
The mechanisms of regulation of urease activity are
also diverse, andmay account for some inconsistencies
in reports of urease positivity, depending upon the
available nitrogen and pH in the media used. Since
most respiratory microbial ureases are inhibited by an
FDA approved agent at achievable therapeutic con-
centrations, and since their activity can now be
detected by in vivo breath test, including in humans,
further studies are indicated to elucidate potential
clinical uses of urease detection and inhibition. In the
diagnosis of lung infection, the prevalence of urease
expression in each individual disease needs to be
considered. For example the expression of urease is
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less frequent in organisms typically causing commu-
nity acquired pneumonia (usually onlyH. influenzae at
5%–10%) [186, 187] that for those causing HAP and
VAP (60%–90%, table 2), and this will have impacts
upon how the test might be used in diagnostic
algorithms in different diseases.
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